Мой лучистый сад

Мой лучистый сад

» » Тонкая структура спектра. Тонкая и сверхтонкая структура спектральных линий

Тонкая структура спектра. Тонкая и сверхтонкая структура спектральных линий

Если спиновый и орбитальный моменты в атоме отличны от нуля, то за счет взаимодействия спинового и орбитального моментов (спин-орбитальное взаимодействие) энергетические уровни могут дополнительно расщепиться. В результате этого вид спектра ЭПР усложнится и вместо одной спектральной линии в спектре ЭПР появятся несколько линий. В этом случае говорят о том, что спектр ЭПР имеет тонкую структуру. При наличии сильного спин-орбитального взаимодействия расщепление зеемановских уровней может наблюдаться даже при отсутствии внешнего магнитного поля.

Ширина спектральной линии

Сигналы ЭПР характеризуются определенной шириной спектральной линии. Связано это с тем, что зеемановские уровни энергии, между которыми происходят резонансные переходы, не являются бесконечно узкими линиями. Если вследствие взаимодействия неспаренных электронов с другими парамагнитными частицами и решеткой эти уровни оказываются размытыми, то условия резонанса могут реализоваться не при одном значении поля Н 0 , а в некотором интервале полей. Чем сильнее спин-спиновое и спин-решеточное взаимодействия, тем шире спектральная линия. В теории магнитного резонанса принято характеризовать взаимодействие спинов с решеткой так называемым временем спин-решеточной релаксации Т1 , а взаимодействие между спинами – временем спин-спиновой релаксации Т2 . Ширина одиночной линии ЭПР обратно пропорциональна этим параметрам:

Времена релаксации Т1 и Т2 зависят от природы парамагнитных центров, их окружения и молекулярной подвижности, температуры.

Исследование формы спектра ЭПР в зависимости от различных физико-химических факторов является важным источником информации о природе и свойствах парамагнитных центров. Форма спектров ЭПР радикалов чувствительна к изменениям их окружения и подвижности, поэтому они часто используются в качестве молекулярных зондов, с помощью которых изучают микровязкость и структурные изменения в различных системах: в растворах, полимерах, биологических мембранах и макромолекулярных комплексах. Так, например, из температурных зависимостей интенсивности и ширины спектров ЭПР спиновых зондов можно получить важную информацию о фазовых переходах в системе, содержащей парамагнитные центры.

Перечисленные выше характеристики спектров ЭПР – g-фактор, тонкая и сверхтонкая структура спектра ЭПР, ширины отдельных компонент спектра – являются своего рода "паспортом" парамагнитного образца, по которому можно

идентифицировать источник сигнала ЭПР и определить его физико-химические свойства. Так, например, наблюдая за сигналами ЭПР биологических объектов, можно непосредственно следить за ходом внутриклеточных процессов в листьях растений, тканях и клетках животных, в бактериях.

ЯДЕРНЫЙ МАГНИТНЫЙ РЕЗОНАНС

До недавнего времени основой наших представлений о структуре атомов и молекул служили исследования методами оптической спектроскопии. В связи с усовершенствованием спектральных методов, продвинувших область спектроскопических измерений в диапазон сверхвысоких (примерно 103 – 106 МГц; микрорадиоволны) и высоких частот (примерно 10- 2 – 102 МГц; радиоволны), появились новые источники информации о структуре вещества. При поглощении и испускании излучения в этой области частот происходит тот же основной процесс, что и в других диапазонах электромагнитного спектра, а именно при переходе с одного энергетического уровня на другой система поглощает или испускает квант энергии.

Разность энергий уровней и энергия квантов, участвующих в этих процессах, составляют около 10- 7 эВ для области радиочастот и около 10- 4 эВ для сверхвысоких частот. В двух видах радиоспектроскопии, а именно в спектроскопии ядерного магнитного резонанса (ЯМР) и ядерного квадрупольного резонанса (ЯКР), разница энергий уровней связана с различной ориентацией соответственно магнитных дипольных моментов ядер в приложенном магнитном поле и электрических квадрупольных моментов ядер в молекулярных электрических полях, если последние не являются сферически симметричными.

Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.

Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное ½.

Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с "полным спариванием", аналогичным полному спариванию электронов в диамагнитной молекуле.

В конце 1945 года двумя группами американских физиков под руководством Ф. Блоха (Станфорский университет) и Э.М. Парселла (Гарвардский университет) впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.

СПЕКТРОСКОПИЯ ЯМР ВЫСОКОГО РАЗРЕШЕНИЯ

Сущность явления ЯМР можно проиллюстрировать следующим образом. Если ядро, обладающее магнитным моментом, помещено в однородное поле H 0 , направленное по оси z, то его энергия (по отношению к энергии при отсутствии поля) равна – m z H 0 , где m z – проекция ядерного магнитного момента на направление поля.

Как уже отмечалось, ядро может находиться в 2I + 1 состояниях. При отсутствии внешнего поля H 0 все эти состояния имеют одинаковую энергию.

Ядро со спином I имеет дискретные уровни энергии. Расщепление уровней энергии в магнитном поле можно назвать ядерным зеемановским расщеплением, так как оно аналогично расщеплению электронных уровней в магнитном поле (эффект Зеемана).

Явление ЯМР состоит в резонансном поглощении электромагнитной энергии, обусловленном магнетизмом ядер. Отсюда вытекает очевидное название явления: ядерный – речь идет о системе ядер, магнитный – имеются в виду только их магнитные свойства, резонанс – само явление носит резонансный характер.

Спектроскопия ЯМР характеризуется рядом особенностей, выделяющих ее среди других аналитических методов. Около половины (~ 150) ядер известных изотопов имеют магнитные моменты, однако только меньшая часть их систематически используется.

До появления спектрометров, работающих в импульсном режиме, большинство исследований выполнялось с использованием явления ЯМР на ядрах водорода (протонах) 1H (протонный магнитный резонанс – ПМР) и фтора 19F. Эти ядра обладают идеальными для спектроскопии ЯМР свойствами:

* высокое естественное содержание "магнитного" изотопа (1H 99,98%, 19F 100%); для сравнения можно упомянуть, что естественное содержание "магнитного" изотопа углерода 13C составляет 1,1%;

* большой магнитный момент;

* спин I = 1/2.

Это обусловливает прежде всего высокую чувствительность метода при детектировании сигналов от указанных выше ядер. Кроме того, существует теоретически строго обоснованное правило, согласно которому только ядра со спином, равным или большим единицы, обладают электрическим квадрупольным моментом. Следовательно, эксперименты по ЯМР 1H и 19F не осложняются взаимодействием ядерного квадрупольного момента ядра с электрическим окружением. Большое количество работ было посвящено резонансу на других (помимо 1H и 19F) ядрах, таких, как 13C, 31P, 11B, 17O в жидкой фазе (так же, как и на ядрах 1H и 19F).

Спектры ЯМР высокого разрешения обычно состоят из узких, хорошо разрешенных линий (сигналов), соответствующих магнитным ядрам в различном химическом окружении. Интенсивности (площади) сигналов при записи спектров пропорциональны числу магнитных ядер в каждой группировке, что дает возможность проводить количественный анализ по спектрам ЯМР без предварительной калибровки.

Еще одна особенность ЯМР – влияние обменных процессов, в которых участвуют резонирующие ядра, на положение и ширину резонансных сигналов. Таким образом, по спектрам ЯМР можно изучать природу таких процессов. Линии ЯМР в спектрах жидкостей обычно имеют ширину 0,1 – 1 Гц (ЯМР высокого разрешения), в то время как те же самые ядра, исследуемые в твердой фазе, будут обусловливать появление линий шириной порядка 1 " 104 Гц (отсюда понятие ЯМР широких линий).

В спектроскопии ЯМР высокого разрешения имеются два главных источника информации о строении и динамике молекул:

Химический сдвиг

В реальных условиях резонирующие ядра, сигналы ЯМР которых детектируются, являются составной частью атомов или молекул. При помещении исследуемых веществ в магнитное поле (H 0) возникает диамагнитный момент атомов (молекул), обусловленный орбитальным движением электронов. Это движение электронов образует эффективные токи и, следовательно, создает вторичное магнитное поле, пропорциональное в соответствии с законом Ленца полю H 0 и противоположно направленное. Данное вторичное поле действует на ядро. Таким образом, локальное поле в том месте, где находится резонирующее ядро,

где σ – безразмерная постоянная, называемая постоянной экранирования и не зависящая от H 0 , но сильно зависящая от химического (электронного) окружения; она характеризует уменьшение Hлок по сравнению с H 0 . Величина σ меняется от значения порядка 10 -5 для протона до значений порядка 10 - 2 для тяжелых ядер.

Эффект экранирования заключается в уменьшении расстояния между уровнями ядерной магнитной энергии или, другими словами, приводит к сближению зеемановских уровней. При этом кванты энергии, вызывающие переходы между уровнями, становятся меньше и, следовательно, резонанс наступает при меньших частотах. Если проводить эксперимент, изменяя поле H0 до тех пор, пока не наступит резонанс, то напряженность приложенного поля должна иметь большую величину по сравнению со случаем, когда ядро не экранировано.

В подавляющем большинстве спектрометров ЯМР запись спектров осуществляется при изменении поля слева направо, поэтому сигналы (пики) наиболее экранированных ядер должны находиться в правой части спектра. Смещение сигнала в зависимости от химического окружения, обусловленное различием в константах экранирования, называется химическим сдвигом.

Впервые сообщения об открытии химического сдвига появились в нескольких публикациях 1950 – 1951 годов. Среди них необходимо выделить работу Арнольда с соавторами (1951 год), получивших первый спектр с отдельными линиями, соответствующими химически различным положениям одинаковых ядер 1H в одной молекуле. Речь идет об этиловом спирте CH3CH2OH, типичный спектр ЯМР 1H которого при низком разрешении показан на рис. 3.

В этой молекуле три типа протонов: три протона метильной группы CH3-, два протона метиленовой группы -CH2- и один протон гидроксильной группы -OH. Видно, что три отдельных сигнала соответствуют трем типам протонов. Так как интенсивность сигналов находится в соотношении 3: 2: 1, то расшифровка спектра (отнесение сигналов) не представляет труда. Поскольку химические сдвиги нельзя измерять в абсолютной шкале, то есть относительно ядра, лишенного всех его электронов, то в качестве условного нуля используется сигнал эталонного соединения. Обычно значения химического сдвига для любых ядер приводятся в виде безразмерного параметра δ.

За единицу химического сдвига принимается одна миллионная доля напряженности поля или резонансной частоты (м.д.). В зарубежной литературе этому сокращению соответствует ppm (parts per million). Для большинства ядер, входящих в состав диамагнитных соединений, диапазон химических сдвигов их сигналов составляет сотни и тысячи м.д., достигая 20 000 м.д. в случае ЯМР 59Co (кобальта). В спектрах 1H сигналы протонов подавляющего числа соединений лежат в интервале 0 – 10 м.д.

Спин-спиновое взаимодействие

В 1951 – 1953 годах при записи спектров ЯМР ряда жидкостей обнаружилось, что в спектрах некоторых веществ больше линий, чем это следует из простой оценки числа неэквивалентных ядер. Один из первых примеров – это резонанс на фторе в молекуле POCl2F. Спектр 19F состоит из двух линий равной интенсивности, хотя в молекуле есть только один атом фтора. Молекулы других соединений давали симметричные мультиплетные сигналы (триплеты, квартеты и т.д.).

Другим важным фактором, обнаруженным в таких спектрах, было то, что расстояние между линиями, измеренное в частотной шкале, не зависит от приложенного поля H0 , вместо того чтобы быть ему пропорциональным, как должно быть в случае, если бы мультиплетность возникала из-за различия в константах экранирования.

Рэмзи и Парселл в 1952 году первыми объяснили это взаимодействие, показав, что оно обусловлено механизмом косвенной связи через электронное окружение. Ядерный спин стремится ориентировать спины электронов, окружающих данное ядро. Те, в свою очередь, ориентируют спины других электронов и через них – спины других ядер. Энергия спин-спинового взаимодействия обычно выражается в герцах (то есть постоянную Планка принимают за единицу энергии, исходя из того, что E = hn). Ясно, что нет необходимости (в отличие от химического сдвига) выражать ее в относительных единицах, так как обсуждаемое взаимодействие, как отмечалось выше, не зависит от напряженности внешнего поля. Величину взаимодействия можно определить измеряя расстояние между компонентами соответствующего мультиплета.

Простейшим примером расщепления из-за спин-спиновой связи, с которым можно встретиться, является резонансный спектр молекулы, содержащей два сорта магнитных ядер А и Х. Ядра А и Х могут представлять собой как различные ядра, так и ядра одного изотопа (например, 1H) в том случае, когда химические сдвиги между их резонансными сигналами велики.

Расстояние между компонентами в каждом дублете называют константой спин-спинового взаимодействия и обычно обозначают как J (Гц); в данном случае это константа JАХ.

Возникновение дублетов обусловлено тем, что каждое ядро расщепляет резонансные линии соседнего ядра на 2I + 1 компонент. Разности энергий между различными спиновыми состояниями так малы, что при тепловом равновесии вероятности этих состояний в соответствии с больцмановским распределением оказываются почти равными. Следовательно, интенсивности всех линий мультиплета, получающегося от взаимодействия с одним ядром, будут равны. В случае, когда имеется n эквивалентных ядер (то есть одинаково экранированных, поэтому их сигналы имеют одинаковый химический сдвиг), резонансный сигнал соседнего ядра расщепляется на 2nI + 1 линий.

Вскоре после открытия явления ЯМР в конденсированных средах стало ясно, что ЯМР будет основой мощного метода исследования строения вещества и его свойств. Действительно, исследуя спектры ЯМР, мы используем в качестве резонирующей систему ядер, чрезвычайно чувствительных к магнитному окружению. Локальные же магнитные поля вблизи резонирующего ядра зависят от внутри- и межмолекулярных эффектов, что и определяет ценность этого вида спектроскопии для исследования строения и поведения многоэлектронных (молекулярных) систем.

В настоящее время трудно указать такую область естественных наук, где бы в той или иной степени не использовался ЯМР. Методы спектроскопии ЯМР широко применяются в химии, молекулярной физике, биологии, агрономии, медицине, при изучении природных образований (слюд, янтаря, полудрагоценных камней, горючих минералов и другого минерального сырья), то есть в таких научных направлениях, в которых исследуются строение вещества, его молекулярная структура, характер химических связей, межмолекулярные взаимодействия и различные формы внутреннего движения.

Методы ЯМР находят все более широкое применение для изучения технологических процессов в заводских лабораториях, а также для контроля и регулирования хода этих процессов в различных технологических коммуникациях непосредственно на производстве. Исследования последних пятидесяти лет показали, что магнитно-резонансные методы позволяют обнаруживать нарушения протекания биологических процессов на самой ранней стадии. Разработаны и выпускаются установки для исследования всего тела человека методами магнитного резонанса (методами ЯМР-томографии).

Макроскопическая структура спектральных линий - это число линий и их расположение. Она определяется разницей в энергетических уровнях различных атомных орбиталей . Однако при более детальном исследовании каждая линия проявляет свою детальную тонкую структуру. Эта структура объясняется малыми взаимодействиями, которые немного сдвигают и расщепляют энергетические уровни. Их можно анализировать методами теории возмущений . Тонкая структура атома водорода на самом деле представляет собой две независимые поправки к боровским энергиям : одна из-за релятивистского движения электрона, а вторая из-за спин-орбитального взаимодействия .

Релятивистские поправки

В классической теории кинетический член гамильтониана : T=\frac{p^{2}}{2m}

Однако, учитывая СТО , мы должны использовать релятивистское выражение для кинетической энергии, T=\sqrt{p^{2}c^{2}+m^{2}c^{4}}-mc^{2}

где первый член - это общая релятивистская энергия, а второй член - это энергия покоя электрона. Раскладывая это в ряд, получаем

T=\frac{p^{2}}{2m}-\frac{p^{4}}{8m^{3}c^{2}}+\dots

Отсюда, поправка первого порядка к гамильтониану равна H"=-\frac{p^{4}}{8m^{3}c^{2}}

Используя это как возмущение, мы можем вычислить релятивистские энергетические поправки первого порядка.

E_{n}^{(1)}=\langle\psi^{0}\vert H"\vert\psi^{0}\rangle=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert p^{4}\vert\psi^{0}\rangle=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert p^{2}p^{2}\vert\psi^{0}\rangle

где \psi^{0} - невозмущенная волновая функция . Вспоминая невозмущенный гамильтониан, мы видим

H^{0}\vert\psi^{0}\rangle=E_{n}\vert\psi^{0}\rangle

\left(\frac{p^{2}}{2m}+U\right)\vert\psi^{0}\rangle=E_{n}\vert\psi^{0}\rangle

p^{2}\vert\psi^{0}\rangle=2m(E_{n}-U)\vert\psi^{0}\rangle

E_{n}^{(1)}=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert p^{2}p^{2}\vert\psi^{0}\rangle

E_{n}^{(1)}=-\frac{1}{8m^{3}c^{2}}\langle\psi^{0}\vert (2m)^{2}(E_{n}-U)^{2}\vert\psi^{0}\rangle

E_{n}^{(1)}=-\frac{1}{2mc^{2}}(E_{n}^{2}-2E_{n}\langle U\rangle +\langle U^{2}\rangle)

Для атома водорода, U=\frac{e^{2}}{r}, \langle U\rangle=\frac{e^{2}}{a_{0}n^{2}} и \langle U^{2}\rangle=\frac{e^{4}}{(l+1/2)n^{3}a_{0}^{2}} где a_{0} - боровский радиус , n - главное квантовое число и l - орбитальное квантовое число . Следовательно, релятивистская поправка для атома водорода равна

E_{n}^{(1)}=-\frac{1}{2mc^{2}}\left(E_{n}^{2}-2E_{n}\frac{e^{2}}{a_{0}n^{2}} +\frac{e^{4}}{(l+1/2)n^{3}a_{0}^{2}}\right)=-\frac{E_{n}^{2}}{2mc^{2}}\left(\frac{4n}{l+1/2}-3\right)

Связь спин-орбита

Поправка спин-орбита появляется, когда мы из стандартной системы отсчёта (где электрон облетает вокруг ядра) переходим в систему, где электрон покоится, а ядро облетает вокруг него. В этом случае движущееся ядро представляет собой эффективную петлю с током , которая в свою очередь создаёт магнитное поле . Однако электрон сам по себе имеет магнитный момент из-за спина. Два магнитных вектора, \vec B и \vec\mu_s сцепляются вместе так, что появляется определённая энергия , зависящая от их относительной ориентации. Так появляется энергетическая поправка вида \Delta E_{SO} = \xi (r)\vec L \cdot \vec S

См. также

Напишите отзыв о статье "Тонкая структура"

Литература

  • Griffiths, David J. Introduction to Quantum Mechanics (2nd ed.). - Prentice Hall, 2004. - ISBN ISBN 0-13-805326-X .
  • Liboff, Richard L. Introductory Quantum Mechanics. - Addison-Wesley, 2002. - ISBN ISBN 0-8053-8714-5 .

Ссылки

Отрывок, характеризующий Тонкая структура

– Какой рыцарь? Отчего? – краснея, спросил Пьер.
– Ну, полноте, милый граф, c"est la fable de tout Moscou. Je vous admire, ma parole d"honneur. [это вся Москва знает. Право, я вам удивляюсь.]
– Штраф! Штраф! – сказал ополченец.
– Ну, хорошо. Нельзя говорить, как скучно!
– Qu"est ce qui est la fable de tout Moscou? [Что знает вся Москва?] – вставая, сказал сердито Пьер.
– Полноте, граф. Вы знаете!
– Ничего не знаю, – сказал Пьер.
– Я знаю, что вы дружны были с Натали, и потому… Нет, я всегда дружнее с Верой. Cette chere Vera! [Эта милая Вера!]
– Non, madame, [Нет, сударыня.] – продолжал Пьер недовольным тоном. – Я вовсе не взял на себя роль рыцаря Ростовой, и я уже почти месяц не был у них. Но я не понимаю жестокость…
– Qui s"excuse – s"accuse, [Кто извиняется, тот обвиняет себя.] – улыбаясь и махая корпией, говорила Жюли и, чтобы за ней осталось последнее слово, сейчас же переменила разговор. – Каково, я нынче узнала: бедная Мари Волконская приехала вчера в Москву. Вы слышали, она потеряла отца?
– Неужели! Где она? Я бы очень желал увидать ее, – сказал Пьер.
– Я вчера провела с ней вечер. Она нынче или завтра утром едет в подмосковную с племянником.
– Ну что она, как? – сказал Пьер.
– Ничего, грустна. Но знаете, кто ее спас? Это целый роман. Nicolas Ростов. Ее окружили, хотели убить, ранили ее людей. Он бросился и спас ее…
– Еще роман, – сказал ополченец. – Решительно это общее бегство сделано, чтобы все старые невесты шли замуж. Catiche – одна, княжна Болконская – другая.
– Вы знаете, что я в самом деле думаю, что она un petit peu amoureuse du jeune homme. [немножечко влюблена в молодого человека.]
– Штраф! Штраф! Штраф!
– Но как же это по русски сказать?..

Когда Пьер вернулся домой, ему подали две принесенные в этот день афиши Растопчина.
В первой говорилось о том, что слух, будто графом Растопчиным запрещен выезд из Москвы, – несправедлив и что, напротив, граф Растопчин рад, что из Москвы уезжают барыни и купеческие жены. «Меньше страху, меньше новостей, – говорилось в афише, – но я жизнью отвечаю, что злодей в Москве не будет». Эти слова в первый раз ясно ыоказали Пьеру, что французы будут в Москве. Во второй афише говорилось, что главная квартира наша в Вязьме, что граф Витгснштейн победил французов, но что так как многие жители желают вооружиться, то для них есть приготовленное в арсенале оружие: сабли, пистолеты, ружья, которые жители могут получать по дешевой цене. Тон афиш был уже не такой шутливый, как в прежних чигиринских разговорах. Пьер задумался над этими афишами. Очевидно, та страшная грозовая туча, которую он призывал всеми силами своей души и которая вместе с тем возбуждала в нем невольный ужас, – очевидно, туча эта приближалась.
«Поступить в военную службу и ехать в армию или дожидаться? – в сотый раз задавал себе Пьер этот вопрос. Он взял колоду карт, лежавших у него на столе, и стал делать пасьянс.
– Ежели выйдет этот пасьянс, – говорил он сам себе, смешав колоду, держа ее в руке и глядя вверх, – ежели выйдет, то значит… что значит?.. – Он не успел решить, что значит, как за дверью кабинета послышался голос старшей княжны, спрашивающей, можно ли войти.
– Тогда будет значить, что я должен ехать в армию, – договорил себе Пьер. – Войдите, войдите, – прибавил он, обращаясь к княжие.
(Одна старшая княжна, с длинной талией и окаменелым лидом, продолжала жить в доме Пьера; две меньшие вышли замуж.)
– Простите, mon cousin, что я пришла к вам, – сказала она укоризненно взволнованным голосом. – Ведь надо наконец на что нибудь решиться! Что ж это будет такое? Все выехали из Москвы, и народ бунтует. Что ж мы остаемся?
– Напротив, все, кажется, благополучно, ma cousine, – сказал Пьер с тою привычкой шутливости, которую Пьер, всегда конфузно переносивший свою роль благодетеля перед княжною, усвоил себе в отношении к ней.

- (мультиплетное расщепление), расщепление уровней энергии и спектр. линий атомов, молекул и кристаллов, обусловленное спин орбитальным взаимодействием. Число подуровней, на к рое расщепляется уровень энергии, зависит от числа возможных ориентации… … Физическая энциклопедия

Тонкая структура - В атомной физике тонкая структура (мультиплетное расщепление) описывает расщепление спектральных линий атомов, которое определяется разницей в энергетических уровнях различных атомных орбиталей. Однако при более детальном исследовании каждая… … Википедия

Тонкая структура - мультиплетное расщепление, расщепление уровней энергии и спектральных линий атомов, молекул и кристаллов, обусловленное спин орбитальным взаимодействием (См. Спин орбитальное взаимодействие). Число подуровней, на которое расщепляется… …

Структура (значения) - Cтруктура (от лат. structūra «строение»): Содержание 1 Основное значение 2 Другие значения (используются наряду с … Википедия

Сверхтонкая структура - сверхтонкое расщепление уровней, расщепление уровней энергии (См. Уровни энергии) атома на близко расположенные подуровни, вызванное взаимодействием магнитного момента ядра с магнитным полем атомных электронов. Энергия (E этого… … Большая советская энциклопедия

Боровская модель атома - Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

Формула Зоммерфельда-Дирака - Движение электрона вокруг атомного ядра в рамках классической механики можно рассматривать как линейный осциллятор, который характеризуется адиабатичным инвариантом, представляющим собой площадь эллипса (в обобщенных координатах): где… … Википедия

Формула Зоммерфельда - Дирака - Движение электрона вокруг атомного ядра в рамках классической механики можно рассматривать как «линейный осциллятор», который характеризуется «адиабатичным инвариантом», представляющим собой площадь эллипса (в обобщенных координатах): где … … Википедия

Зоммерфельд, Арнольд - Арнольд Зоммерфельд Arnold Sommerfeld Зоммерфельд в … Википедия

СПЕКТРОСКОПИЯ - раздел физики, посвященный изучению спектров электромагнитного излучения. Здесь мы рассмотрим оптическую спектроскопию часто называют просто спектроскопией. Свет это электромагнитное излучение с длиной волны l от 10 3 до 10 8 м. Этот диапазон… … Энциклопедия Кольера

МОЛЕКУЛЯРНЫЕ СПЕКТРЫ - спектры испускания, поглощения и комбинационного рассеяния света (КРС), принадлежащие свободным или слабо связанным между собой молекулам. Типичные М. с. полосатые, они наблюдаются в виде совокупности более или менее узких полос в УФ, видимой и… … Физическая энциклопедия

Как указывалось в предыдущем параграфе, наличие спина у электрона приводит к расщеплению энергий состояний с опреленным значением l (т. е. момента импульса, связанного с орбитальным движением электрона) за счет спин-орбитального взаимодействия. Его происхождение качествено может быть легко понято, если иметь в виду, что собственный магнитный момент электрона, связанный с его спином, взаимодействует с магнитным полем орбитального тока. Можно рассуждать по-иному: в системе координат электрона, движущегося в кулоновском поле ядра, возникает магнитное поле, с которым взаимодействует собственный магнитный момент электрона. Энергия такого взаимодействия зависит от ориентации магнитного момента относительно направления поля, т. е. от его проекции на это направление. А так как проекция магнитного момента (вместе с проекцией спина) может принимать два значения, то для любого l мы получаем расщепление на два состояния, соответствующие двум возможным значениям квантового числа полного момента j = l±1/2. Исключение составляет лишь состояние с l = 0, для которого j принимает только одно значение: j = 1/2. Таким образом,

наличие спина у электрона приводит к возникновению поправки к полной энергии атома водорода (см. (5.44)), зависящей от квантового числа j. Эта поправка невелика, она такого же порядка, что и релятивистская поправка.

Последовательный квантовомеханический расчет, учитывающий оба типа поправок, дает:

где m- приведенная масса электрона и протона,

α = е 2 /(4πε 0 ћc) = 1/137

Уже встречавшаяся нам постоянная тонкой структуры,

определяющая величину расщепления уровней по квантовому числу j. Само расщепление, описываемое (6.54), носит название тонкой структуры спектра атома водорода. Подчеркнем еще раз, что поправка за счет спин-орбитального взаимодействия мала: как следует из (6.54), ее отношение к основному члену порядка α 2 , т. е. порядка (1/137) 2 .

Как же выглядит спектр атома водорода с учетом тонкой структуры?

Для классификации электронных состояний обычно применяют спектроскопические обозначения, записываемые в виде nlj, где n - главное квантовое число, l - орбитальное квантовое число в буквенном обозначении (см. §. 6.2), j - квантовое число полного момента импульса или, как его часто называют, полного углового момента.



Основное состояние (главное квантовое число n = 1, а орбитальное l = 0) не расщепляется (а лишь слегка смещается вниз по энергии), поскольку j принимает только одно значение, равное 1/2. Следующее состояние, для которого n = 2, а l может принимать значения 0 и 1, расщепляется по энергии на два, т. к. здесь j может быть равно 1/2 и 3/2. При этом значение j = 1/2 получается в результате сложения спина электрона как с орбитальным моментом l= 0 (состояние 2s 1/2) так и с l = 1 (состояние 2р 1/2), в то время как j = 3/2 может получиться лишь от сложения с l = 1 (состояние 2p 3/2). Уровень энергии, соответствующий n = 3, расщепляется на три соответственно трем значениям, которые может принимать квантовое число j, а именно: 1/2 (состояния 3s 1/2 и 3p 1/2), 3/2 (3р 3/2 и 3d 3/2) и 5/2 (состояние

Согласно (6.54) уровни тонкой структуры атома водорода, соответствующие определенному значению главного квантового числа, двукратно вырождены по l (за исключением уровня с максимальным значением j). Например, состояния 2s 1/2 и 2р 1/2 должны иметь одинаковую энергию. На самом деле их энергии различаются: энергия состояния 2s 1/2 располагается несколько выше, чем энергия 2р 1/2 (хотя и ниже энергии уровня 2p 3/2). Это расщепление уровней, составляющее порядка 1/10 тонкого расщепления, получило название лэмбовского сдвига по имени У. Лэмба, окончательно

установившего в 1947 г. его существование. Причиной лэмбовского сдвига является взаимодействие электрона с флуктуационным электромагнитным полем, или, как принято говорить в квантовой электродинамике, с флуктуациями вакуума. Рассмотрение данного эффекта выходит за рамки нашего курса. Можно лишь отметить, что современная квантовая электродинамика дает превосходное количественное описание такого расщепления.

Отметим, что с учетом спина электрона появляется новая степень свободы, а следовательно, и новое квантовое число m s (ћm s - проекция спина на выделенное направление), принимающее значения ±1/2. Таким образом, состояние электрона в атоме водорода можно характеризовать четырьмя квантовыми числами: n, l, m l , m s . Однако, поскольку орбитальный момент и спин складываются в полный момент (от которого зависит энергия состояния), то состояние атома водорода удобно описывать с помощью другого набора квантовых чисел, а именно: n, l, j, m j , где m j - квантовое число проекции полного момента импульса, пробегающее 2j + 1 значений (- j, -j + 1, ... , j - 1, j). Энергия состояния зависит от n и j, зависимость от l появляется при учете лэмбовского сдвига. Состояния вырождены по m j .

Физический смысл этого вырождения состоит в следующем: при отсутствии физически выделенного направления все ориентации момента импульса в пространстве равноправны.

Коротко остановимся на правилах отбора для электромагнитных переходов (т. е. переходов из одного состояния в другое с испусканием или поглощением фотона). Для систем размеров порядка атомных наиболее вероятным является дипольное электромагнитное излучение и поглощение, которое, как показывает расчет, может происходить лишь при определенных соотношениях между квантовыми числами начального и конечного состояний, а именно: реализуются только такие лектромагнитные переходы, при которых изменения квантовых чисел принимают следующие значения:

Δj = 0, ±1; Δm j = 0, ±1; Δl = ±1; Δm l = 0, ±1; Δm s = 0. (6.55)

Правила отбора (6.55) справедливы не только для водорода, но и для дородоподобных атомов. Отметим, что для многоэлектронных атомов (отличных от водородоподобных) также можно получить правила отбора, для которых (6.55) являются частным случаем. Они будут подробнее рассмотрены в дальнейшем.

ПРИНЦИП ЗАПРЕТА ПАУЛИ. ПЕРИОДИЧЕСКАЯ ТАБЛИЦА

ЭЛЕМЕНТОВ МЕНДЕЛЕЕВА

Принцип Паули

Химикам давно было известно, что свойства многих элементов подобны.

Например, Не, Ne, Ar, Kr, Xe представляют собой благородные газы и весьма «неохотно» участвуют в химических реакциях, a Li, Na, К, Rb, Cs являются щелочными металлами с одной валентностью. Сходными свойствами обладают галогены F, C1, Вг, I. Число подобных примеров можно увеличить. Немногим более ста лет назад, в 1869 г, Д.И. Менделеев обнаружил, что отмеченное подобие не случайно, а связано с определенной периодичностью в свойствах химических элементов. По мере увеличения атомного веса такие свойства меняются «циклически» - через некоторое время они повторяются.

К своим результатам Менделеев пришел чисто эмпирически на основе изучения большого экспериментального материала, но вопрос о том, чем обусловлена найденная закономерность, оставался открытым. Как уже указывалось, первый шаг в этом направлении был сделан в лаборатории Резерфорда во втором десятилетии XX в. Было выяснено, что периодичность элементов связана не с их атомным весом, как думал Менделеев, а с величиной заряда ядра, равная числу атомных электронов. Менделеев был прав постольку, поскольку атомный вес стабильных изотопов для каждого химического элемента монотонно возрастает с увеличением заряда ядра и числа электронов. Поэтому почти безразлично, как располагать элементы - по числу электронов или по атомному весу.

Следующим этапом явилась работа Н. Бора, опубликованная в 1923 г. Бор полагал, что электроны в атоме обращаются вокруг центрального ядра по замкнутым орбитам. Форма каждой орбиты и ее удаление от ядра характеризуются орбитальным квантовым числом /, определяющим угловой момент электрона и главным квантовым числом п. Химические свойства атома в основном зависят лишь от распределения электронов на орбитах с наибольшим значением главного квантового числа п. Такие электроны более других

удалены от ядра и потому связаны с ним менее прочно, они гораздо легче отвечают на внешние возмущения, чем электроны на «внутренних» орбитах.

Периодичность, открытая Менделеевым, связана с тем, что определенная совокупность электронных орбит образует «замкнутую оболочку», представляющую собой сферически симметричное и весьма устойчивое в химическом плане образование. Атомы с целиком заполненными оболочками - инертные газы - очень слабо реагируют на внешние возмущения, поскольку их потенциал ионизации существенно больше, чем у остальных элементов.

В других атомах эти заполненные оболочки эффективно уменьшают, как говорят, экранируют, положительный заряд центрального ядра. В химических реакциях участвуют только электроны, находящиеся на еще незаполненной оболочке. Свойства атомов с одинаковым числом таких электронов оказываются подобными. Так, например, все атомы с одним электроном сверх заполненной оболочки - щелочные металлы - одновалентны. Атомы с двумя «лишними» электронами - щелочноземельные металлы Be, Mg, Ca, Sr,

Ва - двухвалентны и т. д.

Из таблицы Менделеева видно, что в атомах благородных газов Не, Ne, Ar, Кг, Хе, Rn имеется соответственно 2, 10, 18, 36, 54, 86 электронов. Каждый такой атом отличается от предыдущего заполнением новой оболочки. Отсюда легко найти количество электронов в замкнутых оболочках: оно равно разностям чисел электронов в соседних инертных газах, т. е. 2, 8, 8, 18, 18, 32. Ридберг заметил, что этот ряд чисел описывается простой формулой

2N 2 , где N - целое число, равное по очереди 1, 2, 3, 4. Такая закономерность, как мы убедимся, является весьма знаменательной. Что же касается повторяющихся в этой последовательности чисел 8 и 18, то это связано, как мы увидим в дальнейшем, с порядком заполнения состояний в атомах.

В развитом Бором представлении об оболочечном строении атома было одно нечеткое место. Надо было делать специальное предположение, - на низших орбитах атома может находиться лишь ограниченное число электронов.

Такое положение существовало до тех пор, пока в январе 1925 г. В. Паули не сформулировал принцип запрета, носящий его имя. В нашем конкретном случае он означает, что в атоме не может существовать двух или больше эквивалентных электронов, т. е. электронов, для которых значения всех квантовых чисел одинаковы. Если в атоме находится электрон в состоянии, характеризуемом некоторым набором значений квантовых чисел, то это состояние «занято».

В квантовой механике одинаковые частицы рассматриваются полностью тождественными. Что это означает? В классической механике мы можем пометить частицы. Например, при упругом ударе одного биллиардного шара по другому можно указать, какой из шаров после соударения покатился вправо, а какой влево. В квантовой механике это в принципе невозможно из- за отсутствия траекторий у частиц и перекрытия их волновых функций в области, где происходит столкновение. Одинаковые частицы теряют свою индивидуальность, что отражается введением так называемого принципа

тождественности частиц, согласно которому все частицы одного сорта абсолютно неразличимы; возможность «пометить» их означала бы сделать их разными, что невозможно.

Принцип тождественности частиц на языке волновых функций, описывающих в квантовой механике их поведение, означает, что волновые функции системы частиц, получающиеся друг из друга перестановкой пар одинаковых частиц, могут отличаться только несущественным множителем

где f - вещественное число. Добавление этого множителя не меняет ни плотности вероятности |ψ| 2 обнаружения частиц, ни средних значений физических величин. Если сделать перестановку частицы еще раз, то получится функция, отличающаяся от исходной множителем е 2 if . Так как при этом система

возвращается в исходное состояние, то

Следовательно,

перестановка пары частиц местами либо оставляет волновую функцию неизменной, либо меняет ее знак. И поскольку состояние частицы характеризуется как ее положением в координатном пространстве, так и ориентацией ее спина, то в первом случае волновая функция является симметричной функцией координат и проекций спинов частиц, а во втором -антисимметричной.

Как показывает опыт, симметрия или антисимметрия волновой функции зависит от спина частиц. Частицы с полуцелым спином, в том числе электроны, протоны, нейтроны, описываются только антисимметричными волновыми функциями, они подчиняются статистике Ферми-Дирака и потому называются фермионами. Частицы с целым спином - фотоны, мезоны и др. - описываются только симметричными волновыми функциями, они подчиняются статистике Бозе-Эйнштейна и называются бозонами. Как показал Паули, этот опытный факт может быть обоснован в рамках квантовой теории поля.

Антисимметрия волновых функций одинаковых частиц с полуцелым спином - фермионов - приводит к особенно простым и наглядным следствиям в приближении невзаимодействующих частиц. Если пренебречь их взаимодействием друг с другом, то каждую частицу системы можно считать находящейся в определенном состоянии и волновую функцию всей системы представить в виде произведения волновых функций отдельных частиц, а полную энергию Е системы полагать равной сумме энергий частиц системы.

Рассмотрим для простоты систему из двух частиц. В этом случае энергия

Е = Е 1 + Е 2 ,

где Е 1 - энергия первой частицы в состоянии, описываемом волновой функцией

ψ α (r 1 ,s z 1), a

E2 - энергия второй частицы в состоянии

ψ β (r 2 ,s z 2).

Здесь r 1 , г 2 - координаты первой и второй частиц, а

Проекции их спинов на ось z. Решением уравнения Шредингера

для такой системы будет произведение

ψ 1 = ψ α (r 1 ,s z1) ψ β (r 2 ,s z2), (7.1)

а если под цифрами 1 и 2 понимать совокупность всех переменных, от которых зависят волновые функции первой и второй частиц, то можно переписать его в виде

ψ 1 (1,2) = ψ α (1) ψ β (2). (7.2)

Такая запись волновой функции системы страдает тем недостатком, что мы, как это было в классике, «пометили» частицы, т. е. указали, какая их них номер 1, а какая номер 2. Ясно, что в случае одинаковых частиц решение уравнения Шредингера с той же энергией Е может также иметь вид

ψ 11 (1,2) = ψ α (1) ψ β (2). (7.3)

Теперь вторая частица находится в состоянии ψ α с энергией Е 1 , а первая - в

состоянии ψ β с энергией Е 2 . Таким образом, имеется двукратное вырождение, связанное с симметрией задачи по отношению к перестановке частиц местами.

Рассмотрим, как правильно записать волновую функцию всей системы.

Если система может находиться в двух разных состояниях, имеющих одну

и ту же энергию и описываемых волновыми функциями ψ 1 и ψ 2 , то согласно

принципу суперпозиции, любая их линейная комбинация

ψ = c 1 ψ 1 + с 2 ψ 2 (7.4)

(где c 1 , с 2 - произвольные числа) будет также решением уравнения Шредингера. Поскольку волновая функция системы должна быть либо симметричной, либо антисимметричной, то или с 1 = c 2 или с 1 = - c 2 . Нормированная на единицу симметричная функция при α /= β имеет вид

а антисимметричная функция

1/√2 - нормировочный множитель). Полученные формулы легко обобщить на случай систем из любого числа частиц.

Из формулы G.6), описывающей волновую функцию системы невзаимодействующих фермионов, следует крайне интересный и принципиальный для их поведения результат. Если бы две частицы оказались в одном и том же состоянии (ψ α = ψ β , т. е. частицы находятся в одном и том же месте пространства и в одном и том же спиновом состоянии), то волновая функция (7.6) обратилась бы в нуль. Это означает, что в системе одинаковых частиц с полуцелым спином две (или более) частицы не могут одновременно находиться в одном и том же состоянии. Последнее утверждение и называется принципом исключения (запрета) Паули или просто - принципом Паули. В общем случае для систем одинаковых взаимодействующих частиц с полуцелым спином принципом Паули часто называют требование антисимметрии волновых функций.

Принцип запрета Паули делает понятной оболочечную структуру атома.

Если все состояния на низших орбитах уже заполнены электронами, то новой частице не остается ничего другого, как занять свободное место на более высокой орбите. Более того, этот принцип позволяет понять правило Ридберга для числа электронов в заполненной оболочке атома. При заданном значении главного квантового числа п полное количество всех допустимых значений орбитального числа l и магнитного квантового числа m l равно n 2 .

Каждое состояние электрона в атоме, однако, характеризуется не только величинами n, l, m l , но и значением четвертого квантового числа - спинового, которое обозначается m s . Последнее двузначно: оно принимает значения m s = 1/2 либо m s = -1/2. Поэтому полное число состояний электрона при заданном числе п и произвольных l, m l m s равно 2n 2 . Полученный результат в точности совпадает с выражением Ридберга для числа электронов в заполненной атомной оболочке, если положить N = n.

Таблица Менделеева

В настоящем параграфе мы кратко рассмотрим, как описываются состояния сложных атомов. Для этого нам понадобится правило сложения моментов, о котором шла речь раньше.

Чтобы описать структуру сложного атома, надо знать состояния всех его электронов. Опыт показывает, что в легких и средних атомах орбитальные моменты отдельных электронов складываются в суммарный орбитальный момент

а спиновые - в спиновый:

и полный момент равен

J = L + S. (7.9)

В этих случаях говорят, что имеет место LS-связъ или рассел-саундеровская связь. В тяжелых атомах осуществляется так называемая jj-связь, когда полный момент равен сумме полных моментов отдельных электронов, т. е.

Константами движения являются не только полный момент J, но и абсолютные значения L и S и их проекции на вектор J .

Состояния атомов обозначаются аналогично тому, как это делается для отдельных электронов, но только большими буквами: состояния с L = 0, 1, 2, 3, ... обозначаются соответственно буквами S, P, D, F, ... Справа внизу указывается значение квантового числа J, а слева вверху - величина 2S +1; если S < L, то эта величина определяет мультиплетность состояния, т. е. число состояний с одинаковыми L и S, но разными J. Например, если атом углерода находится в состоянии 3 P 0 , то это означает, что L = 1, S=1,

Состояние отдельного электрона в атоме определяется квантовыми числами n, l, m l , m s . Зададим некоторое орбитальное число l и рассмотрим, скольким состояниям оно соответствует. При заданном l возможно 2l +1 разных значений m l , но каждому m l соответствуют два состояния с m s = ±1/2, т. е. всего 2(2l + 1) состояний с разными m l и m s . Таким образом, при любом значении квантового числа n в атоме может быть в

s-состоянии - 2 электрона,

p-состоянии - 6 электронов,

d-состоянии - 10 электронов и т. д.

Говорят, что совокупность электронов, имеющих одинаковые n и l, образует оболочку атома. Согласно этой терминологии говорят об s-оболочках атомов, p-оболочках и т. д. Термин «оболочка» применяется также в смысле совокупности всех электронов, окружающих атомное ядро. Разумеется, при данном п значения квантового числа / не могут превышать n - 1 (см. гл. 4).

Всего в этом случае может быть 2n 2 состояний, т. к. n = n r +l, 0 < l< n - 1, и

все эти состояния образуют электронную оболочку атома с главным квантовым числом п. Оболочки, как и электронное состояние атома, обозначаются большими латинскими буквами:

n = 1 К-слой l = 0 (s-оболочка),

n= 2 L-слой l = 0, 1 (s-, или p - оболочка),

n = 3 М-слой l = 0, 1, 2, (s-, p-, d-оболочка) и т. д.

Рассмотрим теперь, как последовательно заполняется таблица Менделеева. Созданная на чисто эмпирических правилах, исходя из химических свойств элементов и их подобия, периодичность свойств элементов нашла свое естественное обоснование лишь на основе квантовой механики. Впервые объяснение периодической таблицы Менделеева с точки зрения квантовой механики было дано Н. Бором.

В табл. 7.1 приведены квантовые характеристики атомов вплоть до аргона. Здесь использовано стандартное обозначение электронных конфигураций атомов: в скобках стоит спектроскопическое обозначение электронного уровня nl j , а вверху - число электронов, находящихся на этом уровне.

Таблица 7.1. Электронные состояния легких атомов

Таблица показывает, что до бора у всех элементов (Не, Li, Be) полностью заполнен К-слой, а у L-слоя заполнена 2s-оболочка. У более тяжелых элементов (от бора до неона) остовом служит электронная конфигурация (ls 1/2) 2 (2s 1/2) 2 . В боре начинается заполнение p-состояний, в которых проекция спина может быть ±1/2, а проекция орбитального момента m l = 0, ±1.

Возникает естественный вопрос о том, с какими значениями m l и m s электроны будут последовательно заполнять р-оболочку? Здесь вступает в игру правило Хунда, согласно которому наименьшая энергия соответствует состоянию с максимальным суммарным значением S. При этом J = |L - S|,

если заполнено не более половины оболочки, и J = L + S в остальных случаях. Последнее иллюстрируется табл. 7.2.

Таблица 7.2. Квантовые характеристики электронов у атомов от бора до неона

Теперь надо объяснить, почему в таблице Менделеева наблюдается периодичность химических свойств элементов и чем выделены благородные газы.

Благородными называются газы химически почти полностью инертные, их потенциал ионизации - энергия отрыва одного электрона - оказывается наибольшим, как это отчетливо видно из рис. 7.1.

С квантовой точки зрения инертные газы - это элементы, у которых целиком заполнена р-оболочка; им соответствует состояние с S = 0, L = 0, J = 0.

Дело в том, что электроны s-оболочки расположены близко к ядру, они не являются внешними, а вот р-оболочка - внешняя и ее заполнение приводит к инертности элемента. При заполненной р-оболочки после неона электроны опять вначале заполняют 3s-состояние, от чего и возникает периодичность химических свойств.

Правда, с порядком заполнения электронных оболочек у более тяжелых атомов все обстоит далеко не так просто, поскольку с ростом числа электронов в атоме существенную роль начинает играть экранирование поля ядра внутренними электронами,

Pис. 7.1.Для благородных газов, химически почти полностью инертных, потенциал ионизации - энергия отрыва одного электрона - оказывается наибольшим, как это отчетливо видно из рис.

и электрическое поле, в котором находятся внешние электроны, заметно отличается от кулоновского. В результате порядок заполнения (от s-k p-, a затем к d- и f-оболочкам) начинает нарушаться уже после Аr. Экранирование приводит к тому, что в d- и f-состояниях электроны находятся эффективно ближе к ядру, чем в s- и p-состояниях.

Поэтому именно s- и p-электроны (а не d- и f-электроны) определяют химические свойства элемента. Например, заполнение 4f-состояний у редкоземельных элементов практически не меняет их химических свойств. А что касается g-состояний (l = 4), которые должны были появляться в оболочке с главным квантовым числом n = 5, то из-за упомянутого эффекта экранирования их заполнение становится энергетически невыгодным, и в реально существующих атомах они вообще не заполняются.

Атомные номера инертных элементов иногда называют магическими числами, поскольку на первый взгляд кажется, что в их последовательности не наблюдается никакой закономерности. Однако они простое следствие товомеханических закономерностей заполнения электронных состояний.

Действительно, инертными являются элементы с порядковыми номерами

2, 10, 18, 36, 54, 86, ... У гелия два электрона в ls-состоянии полностью

заполняют K-слой, у неона добавлются еще 2 электрона в 2s-состоянии и 6

в 2р - итого 10 электронов, у аргона - еще 8 электронов в состояниях 3s,

3р и т. д., таким образом магические числа соответствуют, как указывалось

выше, заполнению очередной р-оболочки - 2p, 3р, 4p, 5р.

АТОМ В МАГНИТНОМ ПОЛЕ

Спин фотона

Обсудим теперь более подробно вопрос об излучении, возникающем при

переходах атома из возбужденного состояния в основное либо в одно из нижележащих возбужденных состояний. Для этого необходимо прежде всего разобрать вопрос о собственном моменте импульса фотона, т. е. его спине.

Из оптики известно, что световые волны являются поперечными и могут иметь различную поляризацию. В качестве основных поляризационных состояний обычно рассматривают две взаимно перпендикулярные линейные поляризации. В квантовой механике за исходные поляризации удобнее выбирать не линейные, а циркулярные, т. е. соответствующие вращению векторов электрического и магнитного полей световой волны по или против часовой стрелки. Вектор момента импульса электромагнитного излучения

направлен при этом по направлению (у правовращающегося) или против направления (у левовращающегося) движения фотона. Переходя на язык квантовой механики, мы должны сказать, что у фотона есть спин, причем проекция спина на направление движения может принимать два значения -плюс или минус единицу. Существование только двух возможных проекций спина, казалось бы, означает, что он равен 1/2, поскольку такое значение спина обеспечивает, согласно правилам квантования, необходимое число

проекций на заданную ось 2s + 1 = 2. Однако подобное заключение полностью противоречит опыту, ибо в таком случае фотоны были бы фермионами.

Тогда, в частности, при испускании фотона атомом полный угловой момент последнего мог бы меняться на 1/2, чего никогда не наблюдается. Кроме того, при этом фотон подчинялся бы принципу запрета Паули и никаких электромагнитных волн быть не могло - в таком случае максимальная передаваемая передатчиком энергия была бы равна ћω. Следовательно, спин фотона должен выражаться целым числом.

Указанные необычные свойства фотона обусловлены равенством нулю его массы. Отличие безмассовой частицы от массовой заключается в том, что для первой невозможно найти такую систему отсчета, в которой она покоится, поскольку она движется со скоростью света, т. е. нельзя определить спин как момент импульса частицы в системе отсчета, где она покоится.

Подчеркнем, что отличие между системой отсчета и системой координат состоит в следующем: система отсчета всегда связана с материальными телами, тогда как система координат представляет собой математический образ, не связаный с какими-либо материальными телами. Поэтому у безмассовой частицы всегда есть только одно выделенное направление - направление ее скорости (волнового вектора).

Таким образом, для безмассовой частицы можно говорить лишь об акаксиальной симметрии относительно этого выделенного направления; иными словами, для фотона пространство обладает аксиальной симметрией. Выражение такой симметрии - сохранение проекции момента на направление импульса, которая может быть равна только ±1. Такие значения проекции момента импульса фотона на направление импульса соответствуют правовращательной и левовращательной круговой поляризацией. Значение «0» исключается поперечностью электромагнитных волн, так как нулевое значение проекции момента импульса фотона на направление его движения соответствовало бы

продольной поляризации световой волны.

Отсюда следует достаточно сильное утверждение: понятие о спине фотона условно (для фотона нельзя последовательно различать спин и орбитальный момент как составные части его полного момента), и смысл имеет лишь полный момент импульса j = 1, 2, 3, ... (нуль невозможен).

Прежде, чем перейти к описанию различных состояний фотона, кратко остановимся на вопросе о четности состояния. Понятие «четность состояния» связано с операцией изменения направления осей координат на обратное (так называемая пространственная инверсия). Обозначим соответствующий оператор Р. Его действие на волновую функцию состоит в замене х -> -х, у -> -у, z --> -z. Чтобы выяснить, каким может быть результат

действия оператора Р на некоторую волновую функцию ψ, подействуем им на ψ дважды. Тогда, по определению операции инверсии, мы должны получить ту же самую функцию (двукратное отражение осей координат ничего не меняет), т. е. Р 2 ψ = ψ. Отсюда следует, что собственными значениями оператора Р являются ±1: Рψ = ±ψ. В соответствии с этим в квантовой механике различают четные и нечетные состояния (или состояния положительной и отрицательной четности). Так например, четность состояния атома водорода равна (-1) l , т. е. s- и d-состояния являются четными, а р- и f-состояния - нечетными.

Процесс испускания или поглощения фотонов атомами должен присходить с соблюдением законов сохранения энергии, импульса и четности системы.

Теперь вернемся к состояниям фотона. Для обозначения различных состояний с определенными моментами и четностями принята следующая терминология: фотон с моментом j и четностью, равной (-1) j , называют 2 j -польным электрическим фотоном (или E-фотоном); если же у фотона с моментом j четность равна (-1) j+1 , то его называют 2 j -польным магнитным фотоном (или М-фотоном).

Иначе говоря, если обозначать состояние фотона с моментом j и четностью π как j j , то

фотоны электрического типа - это фотоны типа 1 - , 2+, 3 - , 4+,...; магнитного типа - это фотоны типа1 + , 2 - ,3 + ,4", ...

Названия «электрического» и «магнитного» типа произошли оттого, что вектор тока является нечетной пространственной функцией (он при отражении в зеркале меняет свое направление), а круговой ток (магнитный диполь) направление своего вращения при отражении в зеркале не меняет (рис. 8.1).

Возможна иная интерпретация квантового числа j: оно указывает тип симметрии, которым данное состояние обладает относительно вращения, т. е. образно говоря, дает изображение атома с разных сторон:

j = 0 - сферическая симметрия,

j = 1 - свойство симметрии вектора (диполя),

j = 2 - пространственная симметрия квадруполя,

j = 3 - пространственная симметрия октуполя и т. д.

Поэтому к слову «фотон» обычно добавляют «дипольный», «квадрупольный», «октупольный» и т. д. Поскольку структуру Е0-мультиполя (сферическая симметрия) имеет кулоновское поле точечного заряда, действие лоновского поля иногда трактуют как результат обмена промежуточным виртуальным Е0-фотоном. Таким образом на самом деле спин фотона (вернее, его момент импульса) может быть любым, а не только равным 1.

Если размер излучающей системы равен а, а ω - частота излучения, то электрическое поле квадруполя меньше поля диполя в аω/с раз (с - скорость света). Этот множитель можно представить в виде:

аω/с = (2πν/с) а = 2πа/λ. (8.1)

Поскольку мы рассматриваем излучение атомов, то в данном случае а - размер атома, λ - длина волны излучения. Мощность излучения пропорциональна квадрату электромагнитного поля, а следовательно, «скорость» потери энергии возбужденным атомом при дипольном излучении в (2πа/λ) 2 раз больше, чем при квадрупольном, и соответственно, относительная продолжительность излучения, называемая временем эюизни атома в возбужденном состоянии, будет обратно пропорциональна этой величине.

При излучении в видимом оптическом диапазоне длин волн справедлива следующая оценка:

Если обозначить время жизни атома в возбужденном состоянии через т, а

обратную ему величину - вероятность перехода атома из возбужденного

состояния - через w, то мы в результате получим

Аналогичное соотношение имеет место между магнитным и электрическим переходами одинаковой мультипольности

Оно легко обобщается на переходы с любой мультипольностью.

Соотношения (8.3) и (8.4) означают, что практически в атомах происходят лишь электрические дипольные переходы, т. е. переходы с испусканием дипольных El-фотонов (вернее, если возбужденное состояние может «высветиться» через различные переходы, среди которых есть и Е1, то именно он будет преобладающим). Поэтому часто говорят, что спин фотона равен единице, хотя - подчеркнем еще раз - спин фотона (вернее его полный момент импульса) может быть любым. В квантовой системе гораздо меньшего

размера - в ядре - мы довольно часто наблюдаем испускание квадрупольных квантов.

Правила отбора

Теперь мы можем разобраться, какие переходы в оптике возможны, а какие невозможны, и тем самым выяснить роль правил отбора при излучении (и поглощении), упоминавшихся в гл. 4. Правилами отбора полностью определяются оптические спектры атомов, т. е. то, какие переходы из высоковозбужденного состояния возможны, а значит, какие линии мы увидим в спектре испускания нагретых газов. Поскольку при дипольном излучении фотон уносит момент импульса, равный 1, то разность полных моментов импульсов атома в начальном и конечном состояниях должна удовлетворять

соотношениям:

ΔJ = ±1, 0 при J нaч ≠0 и J K0H ≠ 0, (8.5)

ΔJ = ±1 при J нaч = 0 или J K0H = 0.

Отсюда следует, что проекция J на любое направление изменяется не более, чем на единицу, т. е.

Δm j = ±1, 0. (8.6)

Необходимо добавить, что переходы J Haч = 0 ->> J K0H = 0 запрещены, поскольку в силу поперечности электромагнитных волн не может излучиться фотон с J = 0. В то же время переход с ΔJ = 0 при J Haч ≠0 означает поворот вектора J системы на некий определенный угол.

Рассмотрим теперь, какие отсюда следуют правила отбора для векторов S

и L. Изменение вектора спина S связано с переориентацией собственных маг-

магнитных моментов электронов, т. е. на классическом языке это соответствует

изменению токов в системе, что связано с излучением магнитных квантов.

Как мы показали, при оптических переходах с подавляющей вероятностью

происходит излучение только электрических дипольных фотонов, а значит,

для вектора S должно выполняться условие

Таким образом, правила отбора noJ (8.5), (8.6) и S (8.7) определяют следу-

следующие правила отбора по орбитальному квантовому числу и по его проекции:

ΔL = 0, ±1 при L Нач ≠ 0 и L K0H ≠ 0,

ΔL = ±1 при L Нач = 0 и L K0H = 0, (8.8)

Особо отметим, что переходы с ΔL = 0 невозможны для атомов, в которых

испускание света связано с изменением движения всего одного электрона,

Дальнейшее исследование атомных спектров показало, что многие спектральные линии имеют два близких компонента. Так, еще в 1887 г. А. Майкельсон обнаружил расщепление - линии серии Бальмера в водороде, порождаемой переходом

Она оказалась состоящей из двух линий со средней длиной волны 6 563 Å.

Рис. 5.9. Альберт Абрахам Майкельсон 1852–1931

Разность длин волн равна 0.14 Å (то есть относительная величина расщепления порядка 10 – 5 ). Были обнаружены и линии, расщепленные на 3 , 4 и более компонентов. Расщепление линий, как мы теперь понимаем, означает расщепление энергетических уровней атома: у них появляется, как говорят, тонкая структура. Значит, существует неучтенное взаимодействие. Мы говорили, что расщепление линий возникает, например, когда наложенное внешнее поле нарушает симметрию системы. А здесь неучтенное взаимодействие проявляется в отсутствие внешних полей, то есть оно должно быть связано с какими-то внутренними свойствами атома.

Оказалось, что это действительно проявление внутренних свойств, но не атома в целом, а электрона. В 1925 г. С. Гаудсмит и Дж. Уленбек выдвинули гипотезу спина электрона : они предположили существование у электрона собственного момента импульса, не связанного с орбитальным движением. Сначала спин представляли себе как верчение (англ. spin ) электрона вокруг собственной оси (аналог суточного вращения Земли). Потом осознали, что «верчение» нельзя понимать буквально: численные оценки давали линейную скорость верчения, превышающую скорость света в вакууме.

Рис. 5.10. Сэмюэл Абрахам Гаудсмит 1902–1978

Рис. 5.11. Джо́рдж Ю́джин Уленбе́к 1900–1988

Его существование остается загадкой, если находиться только в рамках квантовой механики Гейзенберга - Шредингера. Естественное объяснение спин получил только в релятивистской квантовой теории П. Дирака , соединившей теорию относительности с квантовой механикой.

Рис. 5.12. Поль Адриен Морис Дира́к, 1902–1984

Из опытов следовало, что электрону надо приписать спиновое квантовое число s = 1/2 , имеющее те же свойства (см. формулу (5.5)), что и квантовое число l . Принято для краткости спиновое квантовое число называть спином . В дальнейшем мы тоже будем использовать эту, общепринятую терминологию.

Соответственно, существует единственное собственное значение оператора квадрата спина

а проекция спина на какую-то ось (пробегая через единицу ħ все значения от максимального до минимального) записывается в виде

где принимает лишь два значения

Число называют магнитным спиновым квантовым числом .

Откуда же взялось расщепление спектральных линий? Попытаемся понять это с помощью полуклассических рассуждений. В классической физике любое вращение электрического заряда создает магнитное поле. Вращающийся по орбите радиусом R классический электрон можно представить как виток с током силой l , охватывающий площадь , то есть как магнитный диполь с магнитным моментом


Рис. 5.13. Модель спина и магнитного момента электрона в рамках классической физики

Классическая оценка: электрон на орбите радиусом R и скоростью v имеет период обращения

Возьмем какую-нибудь точку на орбите. За время T через нее проходит заряд е, то есть сила тока по определению равна

Кроме того, электрон имеет орбитальный момент

так что ток можно выразить через орбитальный момент, исключив скорость электрона:

Тогда орбитальный магнитный момент, создаваемый электроном, равен

Рис. 5.14. Классическая модель электрона на круговой орбите

Заменим теперь в соответствии с правилами квантования

и получим выражение для орбитального магнитного момента, которое может быть выведено и более строго:

Отсюда следуют выводы:

· Естественная единица для магнитных моментов в микромире - так называемый магнетон Бора

· Проекция магнитного момента на любую ось всегда должна быть целым кратным магнетона Бора:

(Теперь понятно, почему квантовое число n названо магнитным.)

· Отношение орбитального магнитного момента электрона к его орбитальному моменту импульса, называемое гиромагнитным отношением , равно

Эксперименты показали, что спин электрона обладает двойным магнетизмом: собственный магнитный момент электрона, связанный со спином, равен

то есть гиромагнитное отношение для него оказалось в два раза большим . Это - лишнее доказательство того, что электрон нельзя представлять себе как заряженный шарик, вращающийся вокруг собственной оси: в таком случае должно было бы получиться обычное гиромагнитное отношение. Для проекции собственного магнитного момента имеем

и поскольку

В итоге для проекции спинового магнитного момента снова получились целые кратные магнетона Бора, как и для орбитального движения. По какой-то причине природа предпочитает иметь дело с целым магнетоном Бора, а не с его частями. Поэтому полуцелое значение собственного момента количества движения она компенсирует двойным гиромагнитным отношением.

Рис. 5.15. Иллюстрация орбитального и спинового моментов электрона

Теперь можно понять, почему наличие у электрона собственного магнитного момента приводит к появлению какого-то неучтенного до сих пор взаимодействия. Для этого опять перейдем на полуклассический язык. Орбитальное движение электрона создает магнитное поле, которое действует на собственный магнитный момент электрона. Подобным образом магнитное поле Земли воздействует на стрелку компаса. Энергия этого взаимодействия сдвигает энергетические уровни атома, причем величина сдвига зависит, вообще говоря, от спинового и орбитального моментов количества движения.

Важный вывод:

Пример 1. Оценим расщепление уровней энергии вследствие взаимодействия спинового и орбитального магнитного моментов электрона в атоме водорода.

Круговой виток радиусом R с током силой I порождает в центре магнитное поле

В этой главе было показано, что вращающийся по орбите электрон можно представить как виток с током

Здесь для оценки мы положили

Тогда получаем для магнитного поля, создаваемого орбитальным движением электрона в атоме, величину порядка

Энергия взаимодействия собственного магнитного момента электрона с этим магнитным полем равна по порядку величины

Для оценки положим R равным боровскому радиусу первой орбиты . Подставляя сюда выражения для и и учитывая, что

получаем оценку сдвига энергетических уровней

где - введенная выше (см. (3.3)) постоянная тонкой структуры. Энергия первого уровня атома водорода, как известно, равна

так что (3.13) можно переписать как

Поскольку

a E = 13 6эВ , то

а относительный сдвиг уровней

что соответствует экспериментальным данным.

Это и есть оценка (не расчет) искомого расщепления уровней. В сущности, расщепление уровней - это релятивистский эффект: по Бору скорость электрона на первой орбите

Поэтому не удивительно, что до конца свойства спина могут быть поняты только в релятивистской квантовой теории. Мы не ставим себе такую задачу, но просто будем учитывать наличие у электрона этого удивительного свойства.

Экспериментальное доказательство существования спина электрона было дано в опыте Штерна - Герлаха в 1922 г. Идея опыта состоит в том, что в магнитном поле, неоднородном по оси z, на электроны действует смещающая сила, направленная вдоль поля. Происхождение этой силы проще уяснить сначала на примере электрического диполя, помещенного в электрическое поле. Электрический диполь представляет собой пару противоположных зарядов , расположенных на малом расстоянии l друг от друга. Величина электрического дипольного момента определяется как

причем вектор l считается направленным от отрицательного заряда к положительному.

Пусть положительный заряд находится в точке r, а отрицательный - в точке , так что

Пусть диполь помещен в электрическое поле с напряженностью . Найдем силу, действующую на диполь. На положительный заряд действует сила

на отрицательный -

Результирующая сила будет

Так как расстояние между зарядами мало, то поле в точке расположения отрицательного заряда можно приближенно записать как

Подставляя это разложение в выражение для силы F , находим

Если поле однородно (Е не зависит от ), то на заряды диполя действуют равные и противоположно направленные силы и результирующая сила равна нулю, как и следует из уравнения (5.14). Как известно, такая пара сил не смещает диполь (который в целом электрически нейтрален), но лишь поворачивает его вдоль поля (магнитный аналог - стрелка компаса). В неоднородном же поле результирующая сила отлична от нуля. В частном случае, когда поле зависит только от координаты z, в уравнении (5.14) отлична от нуля лишь производная по z

где - проекция электрического момента на ось z. Неоднородное поле стремится втянуть диполь в область, где оно сильнее.

Магнитных зарядов не существует, но магнитный диполь реализуется витком с током, и его свойства аналогичны свойствам электрического диполя. Поэтому в формуле (5.15) надо заменить электрическое поле на магнитное, электрический момент - на магнитный и написать для силы, действующей на электрон в опыте Штерна - Герлаха, аналогичное выражение

Схема опыта: пучок атомов пролетает сквозь неоднородное магнитное поле, направленное поперечно к скорости атомов. Сила, действующая на магнитные моменты атомов, отклоняет их. Соответственно возможным значениям проекции магнитного момента на направление поля первоначальный пучок расщепляется на несколько пучков. Если полный магнитный момент атома определяется только спином электрона, то первоначальный пучок расщепится на два. Для многоэлектронных атомов расщепленных пучков может быть больше. Для своего эксперимента Штерн и Герлах использовали серебро, которое испарялось в электрической печке. Численные значения расщепления составляли доли миллиметра. Авторы подчеркнули в своих выводах, что неотклоненных атомов не было зарегистрировано. Ниже мы увидим, что это - специфика опытов с элементами первой группы.

Рис. 5.16. Схема опыта Штерна и Герлаха

Главный результат опытов Штерна и Герлаха - прямое экспериментальное доказательство квантования направления магнитного момента атомов. Согласно классической физике, первоначальный пучок должен не расщепиться, а размазаться в соответствии с произвольностью проекции магнитного момента на направление магнитного поля. Соответственно, на экране за прибором вместо двух раздельных линий, оставленных атомами серебра, должна была бы наблюдаться размытая полоска.

Рис. 5.17. Отто Штерн, 1888–1969

Рис. 5.18. Ва́льтер Ге́рлах, 1889–1979

Пример 2. Узкий пучок атомов со скоростью и массой n пропускается через поперечное неоднородное магнитное поле, в котором на них действует сила (рис. 5.19). Протяженность области поля , расстояние от магнита до экрана . Определим угол отклонения следа пучка атомов на экране от его положения при выключенном магнитном поле.